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Abstract

This thesis discusses the development of a component-based architecture for
the processing of medical imaging data. Such an architecture enables a wider
range of analysis techniques as applied to Magnetic Resonance Imaging (MRI)
data than is currently the norm. Differences in image segmentation results on
images obtained using 1.5T vs. 3T MRI machines were investigated using the
architecture and tools presented in this thesis. This thesis presents an analysis of
the design, implementation, and sample results of such an architecture processing
actual MRI data. Studies on images acquired from a test object (phantom) and the
brain of a human subject reveal that a component-based architecture can assist in
developing and testing novel algorithms in the computational laboratory, and serve
as a platform for examining the effects of various image processing procedures in
a radiology suite.
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Chapter 1

Introduction

1.1 Background
Since the earliest use of X-Rays in medicine over a century ago, medical

imaging technology has enhanced the diagnostic ability of doctors and clinicians
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Modern physicians now have access to many
techniques for creating images of the internal structures of the human body with-
out invasive surgery. Current technology can create high-resolution 2- and 3-di-
mensional images of internal body structures. Most prominent among such tech-
nologies are computerized tomography (CT scan) using X-Rays, magnetic res-
onance imaging (MRI), single photon emission computed tomography (SPECT)
and positron emission tomography (PET) [2, 6]. Each technology has applications
that focus on a specific disease [10], novel intervention [3], anatomical structure
[11], or physiological function [5, 9]. MRI scanning gives good tissue differen-
tiation and is non-ionizing to tissues; it is therefore often the modality of choice
for monitoring anatomy and pathology [7, 11]. Further, since MR images show
anatomy in great detail, the scans are ideally suited for quantifying the volume of
anatomical structures. Using radiochemistry, novel pharmacological compounds
have been formulated to study specific molecules and/or their activity through
PET technology [9]. Such complementary tools extend the applications of imag-
ing in medicine [2].

1
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1.2 Motivation, Goals and Objectives
Although imaging technology provides vast opportunities for retrieving valu-

able information about a patient’s internal condition, the volume and formatting
of the information produced by the technology may not be easy to interpret di-
rectly by the physician or clinician. This brings about the motivation to develop
assistive technologies that can facilitate presentation and interpretation of the data
generated by specific imaging methods. In particular, processing which helps to
automate the isolation of individual anatomical structures and other areas of inter-
est can accelerate the diagnostic process.

This thesis describes a system for managing a type of processing on medical
imaging data called image segmentation. Image segmentation techniques attempt
to identify structures by separating contiguous sections of an image with simi-
lar characteristics. The system designed for this project uses the k-Means [12,
pp.529–533] clustering algorithm for performing image segmentation. See Ap-
pendix A for the algorithm details.

The design for the system, called the Modular Image-Processing Architec-
ture (MIPA), provides a component-based model that allows for multiple methods
of processing and viewing image data. The components of the system operate
independently, making the architecture ideal for comparing multiple segmenta-
tion algorithms and techniques. In this context components are plugable software
modules that allow for the system to be extended by a third party after it has been
released. Section 4.5 discusses reasons for this architecture.

Components fall into several categories including:

1. Input (file-format reader)

2. Proximity measure (method to measure similarity of two points)

3. Feature selection (pre-processing)

4. Segmentation (main processing)

5. Integration (post-processing)

6. User interface

This primary goal of the research for this project is the exploration of a com-
ponent-based system to facilitate further research efforts in image processing tech-
niques. This goal is achieved through the development and testing of each compo-
nent listed above. In order to examine the feasibility of the concept and subsequent

2
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design, multiple algorithms for component types one, two, four and six were de-
veloped and subjected to rigorous evaluation. Different algorithms allowed the
possibility of increasing temporal performance by changing algorithm details and
facilitated system testing by creating algorithms only used for testing.

A secondary goal of the system is its evaluation as a clinical/medical research
tool. Towards this goal, the MIPA system described in this thesis is used to eval-
uate and compare the performance of a commonly used pattern classification al-
gorithm (k-Means) on images acquired from multiple MRI scanners. The test
sources for this thesis were 2- and 3-dimensional images produced from 1.5 and
3 Tesla Magnetic Resonance Imaging (MRI) machines, located at St. Joseph’s
Healthcare Hamilton.

1.3 Novelty of the Research Presented in this Thesis
As will be discussed in Section 2, many publications discuss the processing

of medical images and seek improved algorithms, methods and procedures. How-
ever, literature investigations conducted during the course of this research were
unable to locate other instances of a modifiable architecture that can enhance and
optimize the processing involved in medical imaging context. It is such an archi-
tecture, where components can be tailored to individual image processing tasks,
which is being proposed and implemented in this thesis. Therefore, research pre-
sented in this thesis is novel in a number of ways:

1. There is no known software or platform that permits both clinical researchers
and algorithm-oriented investigators to experiment with various paradigms.
For example, a physician can set up a script for testing various paradigms
such as sequential comparison of images taken over several months, or the
effect of therapy. Alternately, an algorithm-oriented researcher can set up
individual components of various algorithms using tools provided in the
MIPA system described in this thesis.

2. An innovative feature of the system design, in the field of MRI image pro-
cessing, is that modifications to algorithms or procedures for viewing an
image or sets of images can be speedily implemented and propagated to
users and published. These modifications can be done and distributed by
third parties.

3. It is also a feature of the MIPA system design that it has the capacity in the
future to serve as a platform to integrate several complex image-processing

3
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steps, such as algorithms from pattern recognition, artificial intelligence
techniques and similar mathematical procedures. For the clinician, the sys-
tem can act as a test bed to verify hypothesis as to which sets of steps or
procedures will generate the best outcome for patient diagnosis and other
clinical analysis.

4. McMaster University’s facilities at St. Joseph’s Healthcare Hamilton house
two MRI machines: one with 1.5 Tesla, and the other with 3 Tesla magnetic
fields. Both MRI scanners were made available for gathering the images
reported in this thesis. This permitted comparison of processing on images
from both scanners. Other comparisons between segmentation results on a
1.5 vs. 3 Tesla MRI machine did not appear in any reported literature.

1.4 Overview of the Thesis
Chapter 2 provides an overview of MRI imaging technology and the literature

available on various segmentation procedures. Chapter 3 examines the factors that
motivated this research; it defines the problem to be addressed, and some of the
issues contributing to the formulation of the design. Chapter 3 also defines the
scope and limitations of the research, and which aspects of the problem are di-
rectly addressed by this research. Chapter 4 provides design criteria and describes
how individual features are implemented. Chapter 5 documents the process of
testing individual modules, and the overall system. The MIPA system was tested
on images generated from a manufactured test object (phantom) and the brain of a
human subject. Chapter 5 also documents the clinically relevant results obtained
from studying the results of processing these images produced under different
controls (1.5 and 3 Tesla, and a combination thereof). Chapter 6 discusses impli-
cations of this research in the context of an improved software platform for both
clinical users and computer scientists.

1.5 Summary
The principal objective of this thesis is the design of a novel, modular image

processing architecture suitable for analyzing magnetic resonance images. The
benefits of developing such a system include facilitation of research into algo-
rithms and clinical aspects of image processing.

4
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Chapter 2

Background

2.1 Introduction
The history of imaging for clinical purposes has centred on the transmission

of radiation through the human body for most of the twentieth century. While
computed tomography in itself was a major breakthrough in thinking of how to
assemble the images to minimize radiation, the use of magnetic field at radio
frequencies set the tone for novel imaging modalities in the last 30 years. In this
chapter, a high-level overview of magnetic resonance imaging and a survey of the
literature on segmentation techniques are presented.

2.2 Magnetic Resonance Imaging
Magnetic Resonance Imaging (MRI) produces high-definition 2- and 3-dimen-

sional raster images of internal body structures by using a strong magnetic field
and radio frequency (RF) waves.

Felix Blotch theorized that a spinning charged particle, such as a proton, cre-
ates a magnetic field [13]. Magnetic fields have an orientation just like a bar
magnet. The North and South poles of a magnet, or magnetic field, naturally at-
tract one another; within a charged particle, this results in an alternating alignment
of the particle’s protons. Where the number of protons is evenly matched (paired),
the field orientation is nullified and undetectable. However, in certain atoms with
an unmatched proton (such as Oxygen, Nitrogen, and Hydrogen) the unpaired
proton results in a measurable magnetic field with a specific orientation. It is this
field which MRI uses to produce its images.

5
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Figure 2.1: Magnetic Forces

When a magnet is placed in the magnetic field of another magnet, the original
magnet will attempt to align itself to the other field. This same phenomenon
causes a compass to align itself with the earth’s magnetic field. In MRI imaging,
the subject is placed in a high strength magnetic field, called the B0. The unpaired
protons in the subject’s body will align themselves such that their field is in the
direction of B0. The alignment of the fields with another magnetic field is called
magnetization.

To generate an image, low-frequency radio waves are directed at the area to
be imaged. These waves are reflected back by the magnetized spins of the protons
within the object. Certain frequencies of radio waves will change the alignment
of the spins; this is because the Radio Frequency (RF) pulse creates a smaller
localized magnetic field called B1. The introduction of the B1 field from the RF
pulse will actually cause the magnetization to be perpendicular to B0 and B1. If
we say the z-axis is parallel to B0 and the RF pulse is along the x-axis, then
magnetization M will be deflected along the y-axis (Figure 2.1).

Once the RF pulse is turned off, the component of magnetization in the x-
y plane will decrease and the component of magnetization along the z-axis will
increase. This process is called relaxation, because the magnetization will relax
to its equilibrium state in alignment with B0.

The magnetization along the z-axis can be expressed as a function of time, t
since the RF pulse was turned off, and of the final equilibrium magnetization, M0,
as Mz(t) = M0(1− e

−t
T1 ). T1 is a constant that depends on the specific material

being magnetized and the strength of B0. As B0 decreases, so does T1.
The magnetization along the x-y plane can be expressed as a function of t,

time since turning off the RF pulse, and of the final equilibrium magnetization M0

as Mxy(t) = M0e
−t
T2 . T2 is a constant that depends on the specific material being

6
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(a) 3T T1 (b) 3T T2 (c) 3T Proton Density

Figure 2.2: Image of the same region of the brain captured with 3 different MRI
modalities.

Table 2.1: Intensity appearance of structures from various MR sequences [14].

Structure T1–weighted T2–weighted
Fat White Light grey
Air Black Black
Bone Black Black
White matter Light grey Grey
Grey matter Grey Very light grey
CSF in ventricles Dark grey Light grey or white
Malignant tissue Dark grey Light grey or white

magnetized.
The magnetization of the subject will also depend on the density of protons.

An object with fewer protons to magnetize, will have a lower magnetic field and
hence magnetization. This Proton Density (PD) is denoted as N(H).

Different types of MRI images reflect these different properties, T1, T2 and
PD. Figure 2.2 shows how T1, T2 and PD images differ. Table 2.1 shows how
different materials in the body appear for T1 and T2 pulse sequences. The values
obtained for an image by a particular pulse sequence are dependent on the B0 field
strength and the material being scanned. If the magnetic field is changed and the
same material is scanned, the resultant values for the image will be different. The
magnetic field of an MRI is generally not changeable and permanently switched

7
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on.

2.3 Image Segmentation
An MR image provides discrete values for an area or a volume of the anatomy

being studied. These values for areas and volumes are called pixels and voxels
respectively. Segmentation is the process of identifying sections of the image as
representing distinct anatomical structures. Segmentation plays an important role
in the diagnostic process because of the need to accurately measure the volume
of structures such as tumours. Researchers can use these measurements to fur-
ther the understanding of diseases like cancer, and even mental diseases such as
Alzheimer’s disease or schizophrenia [15]. In a MRI image of the brain, the pro-
cess of identifying distinct segments of an image and specific structures such as
grey matter or white matter follows segmentation procedures. Research in the
area of image segmentation is quite extensive, therefore only representative but
relevant papers are reviewed in this section.

Image segmentation can be done manually, semi-automatically or automati-
cally. Partial or full automation in segmentation is normally accomplished using
pattern recognition algorithms. These algorithms normally make use of some de-
rived information about the image that may or may not include the image itself;
this derived information is termed a feature of the image. Processing the image
may require several different pattern recognition algorithms, or multiple passes
with the same algorithm. These algorithms are designed for processing images of
specific areas of the body, such as the head [15].

Pattern recognition techniques may use many types of features (derived infor-
mation) extracted from the images in question. Features could be the intensity
value for the pixel, the intensity value after applying filters to reduce noise, the
maximum or minimum intensity value in the general area of the pixel being stud-
ied [14], or any other combination of information about the pixel and its neigh-
bours.

The most effective choice of pattern recognition technique for any given image
will depend on the pulse sequence used, the region being imaged, the resolution
of the scan and many other factors [14].

Saeed [14] identifies the following five key image characteristics that are em-
ployed for segmentation of MRI images: grey tone distribution, texture proper-
ties, edge detection, region growing and contour following. Grey tone distribution
uses a threshold to distinguish important structures from the background based on

8
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image intensity values. The texture properties characteristic attempts to identify
regions of similar texture, such as smoothness, coarseness, and regularity. Edge
detection determines the location of abrupt changes in grey level that occur at the
edge of a structure. Region growing algorithms start with a seed of 8 pixels (for 2-
D structures) and 26 voxels (for 3-D MRI) and neighbouring pixels are compared
for similar properties. When there are no acceptable neighbours of similar prop-
erties, the growth process is terminated. Contour following is particularly robust
for determining the boundary of binary structures. Each pixel or voxel has dimen-
sional and shape information attached to it. A start of the boundary is identified
and path of the contour is mapped out using specific rules [16]. Binary-based
contouring procedures are particularly helpful for extracting outer scalp bound-
aries [14]. Segmentation procedures based on the properties listed above often
provide less than optimum segmentation and are often not suitable for automated
segmentation algorithms. Higher-level segmentation procedures described in the
literature incorporate algorithms for recognition and interpretation [14].

Much recent research has focused on fuzzy clustering methods such as Fuzzy
c-Means. Clark et al. [17] used Fuzzy c-Means to identify tumours in the brain.
They used a multi-step approach where they initially searched for more clusters
than necessary and then performed a second clustering step. The initial step as-
sures that a particular cluster will not erroneously contain pixels from more than
one structure. The second pass groups the clusters from the first pass together.

Chang et al. [18] developed a two-stage system using Fuzzy c-Means and
a fuzzy rule-based system. The first stage uses the fuzzy rule based system to
provide an initial pixel filter which aims to do a good first approximation, while
the second stage uses Fuzzy c-Means to classify the remaining unclassified pixels.

Xue et al. [19] use Fuzzy c-Means in conjunction with various filtering tech-
niques to provide accurate segmentation even with noisy images. The technique
first removes noise with a wavelet-based filter. The images then go through pre-
liminary segmentation using minimum-error thresholding. Next, segmentation is
done with Fuzzy c-Means followed by a process called adaptive enhancement.

Kwon et al. [20] used a modified form of Fuzzy c-Means called hierarchical
Fuzzy c-Means. They first performed pre-processing for noise reduction and to
remove the skull from the image. Next, they use their hierarchical Fuzzy c-Means
to do the actual segmentation. To do this, they divide the image into hierarchical
volumes and calculate the membership for each volume.

Poon and Braun [21] present a contour model that incorporates region analysis
for segmentation. Their deformable model uses an iterative method to minimize
an energy function for N contours corresponding to N+1 regions.

9



MSc Thesis – C.K. Lambacher McMaster University – Computer Science

Boone et al. [22] have developed a multivariate statistical model of MRI im-
ages and have applied it to segment images in 3D space. Their solution for seg-
mentation uses the 3D relative distribution of the pixel-intensities to form a prob-
abilistic model that is built using the properties of the image in all directions of
the neighbourhood for each pixel. Boone et al. report accuracies of 79.4% and
78.1% when identifying grey matter and white matter respectively.

2.4 State-of-the-Art in Modular Based Image Pro-
cessing Systems

From the review in the previous section it can be stated that few researchers
have thought of developing an architecture suitable for implementing any number
of myriad of algorithms, from basic building components of computing and de-
velop an architecture that optimizes resources (memory, CPU), processing steps
and combines them for diagnostic or testing purposes. While there are libraries
that provide some of the functions needed for image segmentation, no description
of component / modular-based systems was found in the literature for perform-
ing a specific procedure such as feature extraction or segmentation. For example,
certain toolkits, such as VTK [23], VolVis [24] can perform visualization but do
not provide any other capability. Both VTK and VolVis provide 3D data visual-
ization and rendering. Other toolkits provide data access routines and some low
level processing functions. Examples of this include ITK [25, 26], ImLib3D [27]
and OpenVL [28, 29]. However, a comprehensive software framework to support
a modularized system suitable for medical image processing could not be found
during a focused literature search and review.

2.5 Summary
In this chapter an outline of magnetic resonance imaging is provided. A re-

view of segmentation methods is also presented. Most of these methods focus on
efficient use of algorithms but very few publications articulate the need for modi-
fiable architecture to optimally process images. There are currently no papers that
focus on modular image processing systems, the subject of this thesis.
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Chapter 3

Motivation for a Modular-Based
Architecture for Image Processing

3.1 Introduction
Medical Imaging is a rapidly expanding field. MRI in particular can assist a

physician in arriving at an accurate diagnosis, observing changes in a patient’s
condition over time, and predict a prognosis for certain types of pathologies. The
needs of end-users who operate on MR images recorded in a clinical environment
are well documented [14]. An inquiry into such documentation can give greater
insight into the users’ needs and identify areas where a software designer must
focus. This chapter examines these requirements and proposes that a modular
component-based architecture can enhance the quality of processing in terms of
its efficiency and quality. While the MIPA architecture can be used with a variety
of image processing algorithms, segmentation has been selected as the focus for
this research.

3.2 Possible System Architectures
Several architectures are possible for an image processing system. This paper

proposes using a component–based system. Two other options are a modular but
monolithic system or a library–based system.

The most basic architecture is the monolithic system. The software itself may
be written in a modular fashion simplifying modification, however each addition
to the system would require a complete recompile and the entire system would
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need to be replaced on the end user’s computer.
A slightly more configurable approach would be a library–based system. The

library system would be allow the creation of the system in layers, each layer
building on lower level libraries. New libraries could be added at any level to ex-
tend functionality and bug fixes could be applied to individual libraries as needed
without requiring the end user to install all libraries for a particular update. How-
ever, adding new algorithms as new libraries would require changes to the higher
level parts of the system.

A component based system is the most configurable. Components are dis-
coverable at runtime and describe their capabilities to the core system. In this
architecture, algorithms may be added piecemeal and changes can be provided
to the end user as individual components. This also allows a greater degree of
freedom for the collection and integration of third party functionality.

3.3 Justification of MIPA for Segmentation
Segmentation is one of the most important procedures in image processing and

is needed for a large variety of applications. Therefore, segmentation was chosen
to serve as a vehicle/tool for implementing MIPA and to evaluate its performance
with one specific algorithm (k-Means clustering). Techniques proposed in this
thesis are not confined to segmentation, as they can be extended to other image
processing techniques as well.

3.4 Justification for the MIPA System in Image Pro-
cessing Systems

Although there exist algorithms and techniques for processing images and per-
forming qualitative analysis on them, there does not yet exist a system that inte-
grates these techniques. Because of such a limitation in the technical domain,
each new research project in an imaging facility must reinvent the entire process-
ing pipeline, even if the research is only concerned with one particular part of
the pipeline. This makes it necessary for the researcher to spend extra time on
designing elements of a system that are not central to their work or expertise.
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3.5 MR Facilities at St. Joseph’s Healthcare Hamil-
ton

During the course of the research reported in this thesis, it was discovered
that there were two scanners at the facility: one with 1.5 Tesla field strength and
another with a 3 Tesla field strength (B0). It was therefore possible to obtain a
set of images from each of these two scanners for the same anatomical structure
or test object (phantom). Since automatic image segmentation results are heavily
dependent on the source images used, recording several different images from
the same anatomical structure can improve these results. For example, use of T1
weighted and T2 weighted images together is very common. As stated in Section
2.2, the values for T1 and T2 are not only dependent on the material being scanned
but also the magnetic field of the scanner (B0). St. Joseph’s Healthcare Hamilton
provided a unique opportunity to compare segmentation results from two MRI
machines with differing magnetic fields.

3.6 Identification of End Users and their Needs
There are two categories of users of the system described in this thesis. The

first category of user is the algorithm researcher who is primarily interested in de-
sign, test and evaluation of algorithms, and the performance of those algorithms on
given images. This type of user is interested in modifying algorithms, using new
sources of data, defining new methods of feature extraction and generally alter-
ing the processing of data and its flow through the system. Algorithm researchers
usually have some computer programming background.

The second category of users are interested in clinical medicine. This cate-
gory of user includes medical researchers, physicians and clinicians. End users
are interested in using specific (usually previously recorded) images, features and
algorithms. They may or may not have some computer programming background.
Some of these users can be categorized as advanced users who have a deeper
understanding of the system and have experienced the benefits of sophisticated
image processing in their clinical practice. These advanced users may want to
experiment and extend the boundaries of what image processing can do to treat
their patients.

The algorithm researchers will identify and explore new methods of using the
system for a variety of algorithms, while clinical end users will use those tech-
niques to perform medical research or diagnosis. When algorithm researchers
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have created a new extension to the system, a method of publication should al-
low the extension to be made available to the medical specialist who can benefit
from their colleagues’ work. This method of publication should allow piecemeal
addition of extensions and not require recompilation of the system. Preferably,
extensions should not be dependent on system version.

Segmentation and image processing in general has several interconnected steps,
the first of which is data loading. The second step is data processing. Further data
processing steps may use the original data and/or the output of a previous process-
ing step. Finally, data visualization is required for the original input data and for
data output at any of the processing steps.

A graphical user interface should make it simple to access the extensions and
be flexible enough to adapt to the requirements of the extension. The extension
itself may determine part of its own interface. The interface should provide a
mechanism for specifying what data loading, data processing and visualization
steps to perform, as well as how the data is fed from each processing step into the
next step.

Finally, in order for this system to become accepted by a wide variety of users,
it should run on all computing platforms that are currently being used for med-
ical imaging research and diagnosis. These include Microsoft Windows, Linux,
common Unix variants and Mac OS X.

3.7 Limitations
The requirements as outlined in Section 3.6 are very broad; implementation

of such a system is a major undertaking that could extend to several years. For
this project, it was decided that the processing pipeline should be limited to five
separate tasks, namely, data input, feature extraction, segmentation, post process-
ing and visualization. It was also decided that only original data and segmentation
results would be displayed (none of the intermediate results or post processing
data, such as histogram, would be displayed). These limitations reduce the com-
plexity of the design and implementation to a manageable level, while retaining
the core functionality necessary to prove the usefulness of a system of this type.
The tasks selected for implementation still provide significant flexibility for future
segmentation research.
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3.8 Summary
Identification of end users and their needs are critical while designing any

software system. In this context, the needs of two diverse groups of users were
examined to arrive at a solution that can stand alone and serve its intended pur-
pose. Therefore, this chapter delved into operational requirements of two groups
of specialized users of the proposed system. In addition, justification was provided
as to why segmentation was made the key tool for testing the modular architecture
based system.
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Chapter 4

Design of the Proposed System with
Component-Based Architecture

4.1 Introduction
This chapter describes the design and development of a configurable system.

The system consists of three distinct layers, namely: the user interface layer, a
core layer which acts as the glue to keep the system together, and finally the
component layer which provides the ability to modify the computational process.
This chapter describes the design and implementation of the above layers, and
discusses the justification for and use of various tools.

4.2 Component-Based Architecture

4.2.1 Configurability through Component Use
To allow users and developers to easily extend the system, most of the func-

tionality of the system is implemented as components that are detected at runtime.
Components can provide file input, feature extraction, distance (dissimilarity) cal-
culation, clustering or post-processing functionality. The user interfaces are also
modifiable. Core functionality is separated from the user interface; any number of
user interfaces can be developed to interact with the software interface of the core
system.
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4.2.2 System Layers
The system is designed in a series of layers as shown in Figure 4.1. The top and

bottom layers, user interface and components respectively, can have an arbitrary
number of implementations. The system interface and the component manager
compose the core of the system. The following sections describe the design of the
layers in the system.

Core Layer

The core of the system is made up of the system interface and the component
manager. It provides a library with which a user interface interacts. The system
interface connects to the component manager. The component manager enumer-
ates the components in the component layer and provides a method of querying
the information collect at enumeration time to the system interface. The system
interface in turn provides an interface abstraction for interacting with the com-
ponents to other layers. The core layers provide services to the components that
are necessary for system operation. The core specifies the method of image rep-
resentation that is internally used by the system; there is no defined object for
this, instead an array used where each value in the array is a pixel value. Nothing
stops components from using another representation internally to itself, however
all image data is moved through the system in the format used bu the core.

User Interface Layer

Multiple user interfaces can be designed to serve different purposes. The user
interfaces use information provided by the system interface layer to determine at
run time which actions can be performed. Actions are scripted through the system
interface in the core layer. The core layer also provides information back to the
user interfaces, as feedback, about the status of the activities initiated from the
user interfaces.

Component Layer

The component layer provides information about particular component in-
stances through registration of various objects to the component manager. The
components are divided into several types depending on their function (See Sec-
tion 4.3). Further, the function of each component determines the software inter-
face and how the component manager will use it.
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Figure 4.1: System Layers
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4.3 Implementation
The design described in this thesis was implemented in the Python program-

ming language and the GTK+ Graphical User Interface (GUI) toolkit. Selection
considerations for choosing Python are described below in Section 4.4. A core set
of Python libraries and user interface elements provide the basic infrastructure,
while additional functionality is added through a component infrastructure. Inter-
nally, both image and feature data are represented as one row in a 2-dimensional
array using the Numeric Python library. The Numeric Python library is also used
for numeric processing. Numeric Python provides MATLAB-like matrix opera-
tions in Python.

Components fall into several categories depending on the functionality they
provide. Categories include services that load data files, do feature extraction, cal-
culate distances, compute clustering metrics, and finally perform post-processing.

Components use the registration interface to provide information about them-
selves to the system at runtime. The information provided includes the component
label, a human understandable label and the names and types of the parameters
that the component is expecting. Valid component parameters are integers, float-
ing point numbers, strings, file names, lists of file names, integer ranges, floating
point number ranges, and slices. Slices are a concept borrowed from Python and
are not to be confused with image slices. A slice, in this context, refers to a selec-
tion of a range of values from a list. This is useful for specifying dimensions to
use for feature extraction.

Processing tasks are driven by a list of commands to be executed, along with
their arguments. Each command is mapped to a component that performs the
specified action. The command-processing engine always processes components
in a specific order, first by component type, and then in the order they were given.
Processing by order of type is done to satisfy dependencies between component
types. Data file loading is always first, followed by the registration of the distance
measure. Next, feature extraction is performed, followed by segmentation and
finally post processing. A component is used when an associated command is
executed.

Two user interfaces were developed for this thesis: a command line interface
and a GTK+ based GUI interface (See Appendix C). The command line interface
makes it possible to execute commands from a scripting language such as the
Bourne Shell, which is useful for testing new components. The GUI interface
provides new users an easier method for selecting the commands they want to
run, and provides a method for viewing results adjacent to original images.
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4.4 Programming Languages and Development Tools
Python was used as the primary programming language because of the ease

with which applications can be developed. Python is a high level, object-oriented,
interpreted language. In many ways it is similar to Perl, but also has many dis-
tinctive features and a more legible syntax. Python natively provides many useful
structures such as lists and dictionaries, and handles memory considerations. This
makes it easy for a new programmer to start using Python.

Python provides an extensive range of basic library functions as well as having
many freely available third party libraries for more specialized tasks. Python and
most of the core libraries are portable to Unix, Mac OS, Windows, and other
systems. Python also allows libraries to be built in C or C++; this is important
for cases where it would be useful to add the functionality of a C or C++ library
as a component to the system. This also allows components to be completely
written in C or C++, allowing greater control over memory usage and the speed
of computation in circumstances when the Python language is too slow.

The Numeric Python library was employed for internal representation and ma-
nipulation of data. Numeric Python was used because it provides optimized ma-
trix calculations. Numeric Python matrix manipulations and semantics are very
similar to MATLAB, which is commonly used in large-scale matrix data manipu-
lation. Python and the Numeric Python library should be easy to read and modify
for anyone with programming experience and an understanding of matrix compu-
tation.

GTK+ was used as the widget set (user interface components) for the GUI
because of its cross platform nature and mature, freely available, Python language
bindings. The development model for GTK+ with Python is very rapid. GUI
layout is done with the GLADE development tool (http://glade.gnome.org/)
and the user interface specification is saved to an XML file which generates the
user interface elements when loaded at runtime. Since the XML files generated
are lengthy and not intended to be hand modified, a sample is omitted. Once
an initial GUI project framework has been laid out, the programmer proceeds by
defining event handlers to react to user initiated events such as button clicks.

All libraries used, and Python itself, are open source projects and are avail-
able to anyone for any use with no restrictions. This was an important factor in
choosing the tools and libraries used. For instance, Qt – an alternative to GTK+ –
was rejected because it was necessary to pay for a development license or accept
the GPL license. The GPL license may have negative implications for component
developers. See Appendix D for The Component Developer’s Guide.
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4.5 Details of the Architecture
As discussed in section 4.2, the system was designed with layered interfaces

and components providing the majority of the functionality. This structure was
used because it provided the maximum amount of flexibility and ease of ex-
tensibility. Designing the system with layered software interfaces allows future
developers to create new kinds of user interfaces to the system that may bet-
ter integrate with existing systems. For example, to integrate the system with
the software on a particular imaging device, the user interface elements alone
could be changed, without having to re-implement the component architecture
and command-processing engine.

A component-based architecture was used for the majority of the system be-
cause it facilitates adding new data file loaders and processing algorithms. This
extensibility is important so that researchers and developers can share their progress,
without the need to allocate resources to integrating new software components
into the core system. The inspiration for these design considerations was the Vim
editor project [30], which has an on-line repository of scripts providing various
forms of functionality. This model has been very successful in allowing the de-
velopers of the editor to focus on the core product, while providing a framework
that makes user- contributed extensions available to everyone. A similar approach
is taken by the Mozilla Project [31], which provides user interface extensions to
their web browser and email clients at http://update.mozilla.org/.

4.6 Human Computer Interaction
The interface for configuring a processing run is divided into two sections:

adding arguments to the command queue, and reviewing them before sending
them to be processed. All of the information used in the interface for adding
commands is provided by the component registration process (See Figure 4.2(a)).
The top left of the interface provides a drop down box for selecting the desired
command. Once selected, the arguments that can be entered are added to the tree
located below the drop down box. Initially all arguments are flagged as incomplete
with a red dot. Once an argument is filled out using the entry location on the
right, the argument will be flagged as complete with a green dot. As can be seen
in Figure 4.2(a), argument components are broken down in the tree. Once all
necessary components of an argument are completed, the argument is flagged as
completed, while the subcomponents which are still incomplete, are flagged as
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(a) Adding Arguments

(b) Reviewing Arguments

Figure 4.2: Processing Setup
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Figure 4.3: Image and Result Visualization

such. The open button on the right is enabled when appropriate, and the green
arrow button allows the user to indicate their acceptance of the argument value. A
description of the argument or component is given in the bottom right. When all
necessary arguments are completed, the add button in the top right is enabled.

The interface for reviewing the command queue, as shown in Figure 4.2(b),
consists mainly of a tree of commands in the queue. The tree expands to show
arguments of the commands and their subcomponents. The same green and red
dots show which arguments were given values. Buttons across the bottom allow
the user to remove the selected command, accept the queued commands and send
them to be processed, or have the commands be printed to the log window. The
log window outputs in a format that can be used with the command line interface.
The run button is only enabled when there are enough commands in the queue for
an execution run successfully. A successful run requires at least one data source,
a distance function, and a processing algorithm.

Once a command queue has been set to run, or when a previously run queue
is opened, the visualization interface is enabled (See Figure 4.3). As results are
returned from processing algorithms, they become available to be viewed. The
clustered results take their colour pallet from the average value of the cluster as-
sociated with the pixel. Since each input image provides a possible colour average,
the colour used to display the clustered result is taken from the input image cur-
rently being displayed on the left side of the screen. When a 3D image is being
visualized, a slider bar allows the user to select the slice they would like to view.
A check box and spin control at the top of the window allow the user to highlight a
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cluster so that it is easily identifiable in the visualization results. Figure 4.3 shows
a cluster being highlighted in red.

4.7 Summary
This chapter provides architectural details of the component-based system.

It was the intention of the design to incorporate as many open source tools and
libraries as possible, with the hope that it would make maintenance easy and man-
ageable.
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Chapter 5

Evaluation of the Component-Based
Architecture for Image Processing

5.1 Introduction
Following the design and implementation of the proposed system, an evalu-

ation of its performance is presented in this chapter. In order to assess software
functionality and quality a biomedical study was conducted using the system. The
results from the evaluation of the software functionality and quality are discussed
in this chapter, while the results of the biomedical study are discussed in Appendix
B.2.

The goal of the assessment of the software functionality and quality is to deter-
mine whether the system performs as expected and whether it is generally useful.

5.2 Evaluation of the Overall System

5.2.1 Testing of Individual Components
Unit testing was performed on each software module in order to ascertain that

the basic expectations were met. Some modules were trivial to assess. The image-
loading modules were tested in conjunction with the image display module. The
data path though the clustering algorithm was the most difficult to test. In order to
confirm conformance, a dummy algorithm was developed that assessed each pixel
as its own cluster, resulting in an output display with a 1:1 pixel map from original
to output image. When the image was displayed and confirmed to be displaying
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correctly, the data path was determined to be valid.

5.2.2 Performance Evaluation
Two categories of performance evaluation were done: evaluation of the k-

Means algorithm [12, pp.529–533], and evaluation of the time taken to process
the data.

The k-Means algorithm was used in this thesis because it is well documented
in pattern recognition literature, allowing a focus on the architecture itself. The
details of the algorithm are presented in Appendix A for completeness.

Evaluation of the k-Means Algorithm

The k-Means algorithm was originally developed as a working implementa-
tion using MATLAB, and then ported to the Python language for use within the
system. Test data containing 2, 3, and 4 clusters were correctly classified. Test-
ing was also done using the MATLAB implementation and MRI data, which was
useful for direct comparison to the output from the Python implementation.

Data Processing Time

Execution time was tested with the Python implementation of the k-Means al-
gorithm. The results indicated that execution would take too long to be practically
useful to researchers. The python profiler found that most of the execution time
was being spent in the interface between the Distance function and the k-Means
algorithm. Based on these observations, a C implementation for the k-Means al-
gorithm was created with the Pyrex tool. The Pyrex tool allows developers to
write modules in a Python-like language that is then translated into a C language
file; this C language file is next compiled as a C language extension for Python.
Only minor modifications were necessary to convert the existing Python imple-
mentation of k-Means to C, using Pyrex.

Tables 5.1 and 5.2 show the time taken, in seconds, for the C Language and
Pure Python implementations for both the 2-D data and 3-D data with 56 slices.
Speed improvements of an order of magnitude or better were obtained, in general.

The component based architecture of the system allowed easy extension of
the system to include the alternative k-Means algorithm implementation and also
allowed easy comparison of the two implementations. Addition and comparison
of completely different algorithms would not be any more difficult.
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Table 5.1: Time taken – in seconds – with Pure Python and C Language imple-
mentations of k-Means algorithm for 2-D images.

Clusters Pure Python C Language
3 109 29
4 824 53
5 1806 93
6 1682 154

Table 5.2: Time taken – in seconds – with Pure Python and C Language imple-
mentations of k-Means algorithm for 3-D images.

Clusters Pure Python C Language
3 40260 1723
4 212894 2895
5 140550 5031
6 250059 8051
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Figure 5.1: Two views of the same resultant image: the left version has no cluster
highlighting; the one on the right has a cluster highlighted (in red) that was not
visible without highlighting.

This comparison also showed that the system can just as easily be extended in
C as in native Python.

Visualization of Results

Clustered results are shown with a palette taken from the original image being
shown on the left of the display. Sometimes clusters do not appear visible with
this mechanism, because the original colours in the area surrounding the cluster
are too similar to the cluster itself to be easily distinguishable to the human eye.
This is the reason behind the highlight cluster option. One cluster at a time can be
highlighted with the highlight colour. For the purpose of this project, the colour
selected was red; however, this should be a configurable option in a publicly re-
leased version of this system, as red may not be suitable for some users. Figure
5.1 shows a clustered image without highlighting turned on and the same result
image with highlighting turned on. Such highlighting greatly enhances the ability
for the user to analyze and appreciate these results.

5.3 Summary
The system proved its ability to be used for segmentation research. Adding

new functionality is relatively easy and further research into segmentation tech-
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niques could be aided by using this system. The system implemented successfully
fulfils the goals set out in Chapters 3.6 and 4.2.

Extensibility was demonstrated by the implementation of components that
were used entirely for testing as well as components designed to provide per-
formance enhancement over previously developed components. The ability to
perform Algorithm comparison is shown through the development of two differ-
ent implementations for the k-Means algorithm which provided vastly different
performance from each other.
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Chapter 6

Discussion and Suggestions for
Future Work

6.1 Introduction
Having designed, developed and tested a component-based image processing

system, it is essential to examine the relevance of the system in a computational
laboratory or radiology suite. This chapter identifies the above issues and suggests
some possible avenues for future research.

6.2 General Advantages of the MIPA System
One of the direct benefits of the system is its portability between platforms.

Many tools only work on one or a small number of operating systems. The system
presented in this thesis is portable to any operating system that supports the Python
language. Since it is possible to create new user interfaces, an operating system
that supports Python but not the GTK+ graphical toolkit can still be supported by
creating a new user interface using a different graphical toolkit.

6.3 Advantages of the MIPA System for Algorithm
Research

In order to effectively compare several different (but similar-purpose) algo-
rithms, it is necessary to minimize differences between the test cases. The MIPA
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system allows researchers to isolate the algorithm of interest from the rest of the
system through the compartmentalization of components, making it easier to di-
rectly correlate differences in results to the algorithms themselves. A computer
scientist can focus his efforts on a new image-processing algorithm, without de-
veloping a new user interface or core system pipeline.

If a MIPA-like system is adopted as a standard for research, new algorithms
can be easily compared against existing algorithm implementations. The MIPA
system makes it easy for algorithm implementations to be shared between re-
searchers.

6.4 Advantages of the MIPA System in a Radiology
Suite

If a component-based system such as the MIPA system became a standard
tool in the Radiology Suite, researchers and clinicians would be able to create and
exchange new diagnostic tools and algorithms. Some examples of how the system
would accomplish this goal include:

• A clinician can adopt the latest, most efficient components for image pro-
cessing or core system work, without having to relearn the entire system
interface

• A user-interface developer can design one or more interfaces optimized to
particular types of users, without needing direct knowledge of how the un-
derlying system layers operate.

6.5 Suggestions for Future Work
The most important addition to the system would be 3-D visualization. This

would present obvious advantages for the clinician in his diagnostic efforts, by
allowing the additional perspectives on structures that are an integral part of a
3-dimensional image.

Performance gains could be obtained from various opportunities for paral-
lel processing. The simplest type of parallel processing applicable to the system
would see processing steps that are not dependent on one another performed si-
multaneously. This kind of scheduling, while not trivial, is a well-known prob-
lem space. Solutions for tasks of this kind exist for database operations, paral-
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lel compilation/build activities, and other scheduling-intensive problem domains.
Another type of parallel computation applicable would in the processing of the
algorithms that comprise the various components of the system. Parallelization
of algorithm processing is a more difficult task, as research into parallelizable
algorithms will need to be performed.

A great deal of flexibility can be obtained by fully implementing the require-
ments from Section 3.6; more diverse types of data and processing could then
be supported. With this accomplished, even pre-processing tasks such as those
described in Section B.2.2 could be integrated into the system.

6.6 Summary
This chapter presents the multiple uses and application of component-based

architecture in both for algorithm research and a radiological context. Suggestions
for future work are also listed.
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Chapter 7

Conclusions

This thesis has presented a component-based architecture to assist research
into segmentation of radiological images in general and MRI images in particu-
lar. At a time when hardware costs are diminishing rapidly, an architecture – such
as the one described herein – can decrease software development costs and pro-
vide relatively easy maintenance. The results described in this thesis demonstrate
the feasibility of component-based image processing in a radiological context,
something not yet done in this field. Testing of the system on images obtained
from a test object (phantom) and a human brain revealed the superiority of 3T
MRI system compared to a 1.5T system for image segmentation. A system of the
type examined here can support experimental research for a wide range of users
including the computer scientist, the biomedical researcher, and the diagnosing
physician.
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Appendix A

k-Means Algorithm

The k-Means algorithm, sometimes called the Isodata or c-Means algorithm
groups a data set into a predefined number of clusters, k. It is called a hard or
crisp clustering algorithm because each data point belongs exclusively to a single
cluster [12, pp.529–533].

k-Means or c-Means or Isodata algorithm

• Choose arbitrary initial estimates of the centre for each cluster

• while there is no change in the cluster centre

– For i = 1 to N, were N is the number of data points

∗ find the nearest cluster centre for data point i, (called cluster j)
∗ assign data point i to cluster j

– For j = 1 to k

∗ update the cluster centres as the mean of the data points assigned
to each cluster.
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Appendix B

Bio-Medical Study

B.1 Introduction
The goal of the biomedical study was to evaluate the practicality of differenti-

ating between the processing (segmentation) of images obtained from a 1.5T MRI
machine vs. images obtained from a 3T machine. An additional point of com-
parison was through the combination of images from both 1.5T and 3T machines.
Qualitative evaluation was performed to determine if features obtained from a
combined image gave superior segmentation results to those of either machine
alone.

B.2 Bio-Medical Evaluation

B.2.1 Data Acquisition
Data for testing was acquired at St. Joseph’s Healthcare Hamilton. Images

from two separate sources were obtained and subjected to segmentation: a test
object (phantom) and the author’s brain. A phantom was used in order to be able
to test the accuracy of the segmentation algorithms by looking for known volumes.
The author’s brain was used in order to test the algorithms on real anatomical
data. Radiology department of the St. Joseph’s Healthcare Hamilton generously
provided access to their 1.5T and 3T MRI machines for the work reported in this
thesis. All images were acquired on June 1, 2004.

The phantom was composed of honeydew melon and avocado chunks sus-
pended in gelatin. The materials were picked at the suggestion of Dr. Mike Nose-
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worthy, directory of MRI research facility at St. Joseph’s Healthcare Hamilton,
such that they could be distinguished when viewed as an MRI image. Unfor-
tunately, only one modality showed the difference between avocado and melon.
This was the 1.5T T1 modality, seen in Figure B.1. The light coloured block on
the right side of the image is avocado, while all other squares are melon chunks.
The lower piece on the left hand side is also melon. Volumes for the melon and
avocado were determined by measuring the amount of water the chunks displaced
when submerged. The volume of gelatin was not recorded. The volume measure-
ment was taken so that quantitative analysis of the accuracy of the segmentation
algorithm could be performed.

Three sets of images per subject from each MRI machine were acquired, each
of the three sets using a different modality. The modalities used were T1 weighted,
T2 weighted and PD weighted.

B.2.2 Pre-Processing
In order to improve the bio-medical results, some pre-processing was done on

the images using the AFNI (Analysis of Functional NeuroImages) tools. AFNI
is a set of C language tools that facilitate processing and display of MRI and
fMRI image data (http://afni.nimh.nih.gov/afni/) in a MRI facility. It is
recommended that AFNI algorithms be applied to enhance the quality of images
obtained for a study. For example, the AFNI registration algorithm modifies the
images so that all pixels in each of the images are in line with one another. Such
processing effectively removes differences in orientation between images caused
by subject movement. It also aligns the images that were taken on the different
MRI machines, since it is impossible to place the subjects in exactly the same
orientation after moving between machines.

Figures B.2 and B.1 show the resultant images for the human brain and phan-
tom respectively. In both the human brain and the phantom, slice 33 was used for
2-D testing; this slice is presented here.

The pre-processing discussed here was performed externally to the MIPA sys-
tem. Section 6.5 discusses the potential inclusion of these pre-processing steps in
the MIPA system.

B.2.3 Design of Test Cases
Three test cases were run for each of the two test objects. Test case number

one used all three modalities from the 1.5T MRI machine. Test case number two
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Figure B.1: Original phantom images: left column 1.5T, right column 3T. Top to
bottom: Proton Density, T1, T2.
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Figure B.2: Original human images: left column 1.5T, right column 3T. Top to
bottom: Proton Density, T1, T2.
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used all three modalities from the 3T MRI machine. Test case number 3 used all
three modalities from both the 1.5T and the 3T MRI machines.

The test cases each performed k-Means clustering in search of 3, 4, 5, 6, 7,
and 8 clusters. After the clustering, a histogram was calculated for each of the
results. The histogram was computed so that the volumes of the clusters could be
calculated and compared with the volumes recorded for the phantom.

Sections B.2.4 and B.2.5 discuss the results obtained from the test runs on the
phantom and human test objects respectively.

B.2.4 Identification of Disparate Clusters in a Phantom
As described in Section B.2.1 the only image (Figure B.1) where the avocado

was visually distinguishable from the melon was the 1.5T T1 image. 1.5T image
processing provided a segmentation of melon and avocado in separate clusters
while 3T image processing did not. Figure B.3 shows the original 1.5T and 3T T1
images as well as the most reasonable results for 1.5T image processing in 2-D
and 3-D. The 3-D processing provided far superior results over 2-D processing.

Volume comparisons using histograms were not attempted because it could
be visually determined that the results were not what were expected, i.e. clas-
sification based on pixel intensities were not successful, and therefore volume
comparisons would not provide rational results. Because the differentiation be-
tween melon and avocado is difficult for humans, these results are not indicative
of a failure of the software. Better materials for construction of the material need
to be researched. Section B.3 discusses this further.

B.2.5 Results from Processing of Images of the Human Brain
Test cases using less than 5 clusters did not provide any comparable results,

and so were discarded. Figure B.4 shows all the results obtained for test cases
using 5 clusters. 5 cluster segmentation shows demarcation of various anatomical
structures. Raw T1 images are also shown in 1.5T and 3T to provide a basis for
comparison.

Obtaining Useful Results

As can be seen from Figure B.5 images from the 1.5T machine, the 3T ma-
chine and the combination were able to provide good results in at least one test
case. The 1.5T case was able to provide useful results only when the processing
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Figure B.3: Phantom results where melon and avocado are identified as differ-
ent structures: top left original 1.5T T1, top right 3T T1, bottom left 1.5T 2-D 7
clusters, bottom right 3T 3-D 8 clusters.
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Figure B.4: All images segmented with 5 clusters: top row are original T1
weighted images, middle row are 2-D and bottom row are 3-D. The left column is
1.5T; the middle column is 3T; the right column is a combination of 1.5T and 3T.
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Figure B.5: Reasonable human results: top left to bottom right: 1.5T T1 weighted
original, 3T T1 weighted original, 1.5T 3-D 6 clusters, 3T 2-D 7 clusters, both 3-D
7 clusters, both 2-D 6 clusters
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Figure B.6: Human results for 1.5T in 2-D with 8 clusters.

acted on the entire 3-D image, rather than just a single slice. The best single slice
image for the 1.5T results can be seen in Figure B.6. The 3T case was only able
to produce useful results when acting on a single slice at a time. Figure B.7 shows
the best result of processing the entire 3-D 3T image set. Using 3T and 1.5T im-
ages together seemed to produce the best results overall. Using both, reasonable
results were returned for 2-D and 3-D image processing; also, the segmented im-
age most closely matched the input. As was expected, the results from processing
3T images alone appear slightly better than the results of processing 1.5T images,
but the comparison is probably invalidated because the valid results for 1.5T are
based on 3-D processing while 3T results are based on 2-D processing. It is im-
portant that the attending physician make the conscious decision regarding the
optimum number of clusters bases on his clinical expertise.

B.3 Discussion
The use of a phantom did not fully emulate the human brain as effectively as

was hoped. The gelatin vibrated during scanning which probably added to the
noise found in these images. In addition, the percentage of gelatin should have
been lower to increase the role of melon and avocado in the images. Selecting ob-
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Figure B.7: Human results for 3T in 3-D with 7 clusters.

jects with greater differentiation than avocado and melon would have also helped
to improve the results.

Reasonable results were obtained from processing images from the human
brain. We can clearly show an improvement in using both the 1.5T images and
the 3T images together. One hypothesis for the result is that the images captured
at each of the two field strengths have different deficiencies, allowing them to act
in a complimentary fashion when analyzed together.

Pixel location did not play any part in the image processing. All results are
based solely on pixel intensity. Adding locality information features such as those
used by Matsui, Suganami and Kosugi [15] would probably improve results dra-
matically. These results demonstrate, however, that even when using a simplistic
approach to segmentation, useful results can be achieved.
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Appendix C

User’s Guide

C.1 Graphical User Interface

C.1.1 Starting and Stopping the Program
To start the application run the following from the distribution directory:

lambacck $ python clusterviewer.py
You will get a window that looks like Figure C.1.

Click on the quit button or the window manager’s close button to exit. If the
application is currently doing image processing, it may take some time to interrupt
this process and close successfully.

C.1.2 Modes
The program has two operational modes. The first mode is the processing

setup mode. The second mode is the reviewing results mode.
Processing setup mode is entered by clicking on the new button located in the

top left corner of the window. This causes a file chooser dialog (Figure C.2) to
open, allowing the user to select the location for saving processing results. After
selecting an empty folder, the program will be ready to configure a new processing
session (Section C.1.3).

If processing was already conducted in another program session, the results
can be loaded by clicking the open button at the top left. The open saved results
dialog (Figure C.3) will allow the user to select the folder containing the results
to be reviewed. After selecting the saved results to be reviewed, the program will
be ready to review processing results (Section C.1.4).
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Figure C.1: Initial screen presented to user.

Figure C.2: New processing task output folder selection dialog.
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Figure C.3: Open Saved Results Dialog

C.1.3 Configuring a New Processing Session
After selecting a folder to save results, as described in Section C.1.2, the pro-

gram will be ready for the user to configure a new processing session (Figure C.4).
Defining a processing session consists of three tasks, Adding Commands (Section
C.1.3), Reviewing Commands (Section C.1.3), and Generating Results (Section
C.1.3).

Processing sessions are command driven. Commands are divided into several
types: image loading, distance calculation, feature selection, main processing,
and post processing. Any image processing session requires an image loading
command, a distance calculation command, and a processing command in order
to run. Command execution order is determined first by type, in the order given
above, and then by order given by the user.

Adding Commands

The bottom left portion of the screen is the command definition area. In this
area available commands can be chosen from the command drop down box (Fig-
ure C.5. Arguments for the command are shown in the argument list below the
command drop down. To the right of the command drop down and argument list
are the add button, argument editing area and argument instruction area. The add
button is disabled until all necessary command arguments are given.

The argument list shows completed arguments with a green dot, while uncom-
pleted arguments have a red dot. Arguments are edited by selecting the argument
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Figure C.4: Ready to define a processing session.

Figure C.5: Available commands are selected from drop down box.
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Figure C.6: Status indicators for completed arguments turn red.

from the argument list and typing in the argument edit box. Selecting another
argument or clicking the accept button will save the argument value. Once an
argument is saved, its completed indicator will change from red to green (Figure
C.6.

If the argument requires one or more filenames, the file selector button will
become enabled (Figure C.7) and clicking it will provide the file selector dialog
(Figure C.8). By default the file selector will limit the visible files to those of the
type desired by the command argument. Figure C.8 shows a file selector dialog
limited to AFNI files.

Some arguments have sub arguments (Figure C.9). These sub arguments ex-
pand out in a tree to allow each sub argument to be completed. Each individual
sub argument also has a completed indicator. When all necessary sub arguments
have been defined, the completed indicator for the main argument will become
green (Figure C.9).

Once all necessary arguments are completed, the add button will be enabled
(Figure C.10). Clicking the add button will add the completed command the
Queued Commands list (See Section C.1.3).
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Figure C.7: The file selector button is enabled when editing an argument that
expects a file name.

Figure C.8: File Selection Dialog
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Figure C.9: Some arguments are optional.

Figure C.10: Command is ready to be added.
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Figure C.11: Commands Being Reviewed

Reviewing Commands

The bottom right side of the display shows the queued commands (Figure
C.11). Commands are added to the queue by clicking the add button on the left
(See Section C.1.3). Commands expand out in tree style to show their argument
values and sub-arguments. Arguments that are not required and not filled out are
marked with a red dot in the status area. Commands can be removed from the
queue by selecting the command to be removed and then clicking the remove
button.

Once at least one data source command, distance calculation command, and
processing command have been added to the queue, the run button and the show
args button will become enabled (Figure C.12). Clicking the run button will make
the program begin to process results (See Section C.1.3). Clicking on the show
args button will show print the commands out to the log window (See Section
C.1.5) in a format suitable for use with the command line interface to the system
(See Section C.2).
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Figure C.12: Sufficient commands are defined to enable the run button.

53



MSc Thesis – C.K. Lambacher McMaster University – Computer Science

Figure C.13: Source images are shown after processing has started.

Generating Results

When the desired commands have been added to the queued command list
(See Section C.1.3), clicking the run button will cause the system to start generat-
ing results. The user interface will then be placed in results mode (Section C.1.4)
so that results can be reviewed as they are returned by the system (Figure C.13).
Initially only the source images will be available for review. As results are gen-
erated they will also be made available for review (Figure C.14). As results are
generated, some performance data will be printed to the log window (See Section
C.1.5).

C.1.4 Reviewing Results
The Graphical User Interface allows the user to compare original images a-

gainst processed images when in result review mode (Figure C.14). This mode
is entered by clicking the open button when the application is first started (See
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Figure C.14: Results are shown as they become available.
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Figure C.15: A result image with cluster zero being highlighted.

Section C.1.2) or by clicking the run button to generate results (See Section C.1.3).
The left hand side of the screen shows the source image selected by the user

from the original image drop down box. The right hand side of the screen shows
the resulting processed images, which are selected from the clustered images drop
down.

Often clustering results are not obvious. The highlight cluster features allows
the user to select a cluster for the software to highlight. This feature is enabled by
clicking the highlight cluster check-box at the top of the screen (Figure C.15). The
number next to the highlight cluster check-box indicates which cluster is currently
highlighted and allows the user to select the cluster to highlighted. Figure C.15
shows cluster zero being highlighted while Figure C.16 shows cluster two being
highlighted.
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Figure C.16: A result image with cluster two being highlighted.
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Figure C.17: The log window is enabled.

C.1.5 The Log Window
The Graphical User Interface provides a log window which can be shown or

hidden at the user’s request. By default it is not shown. The log window can be
toggled by clicking the log window check box at the top of the screen. Figure C.17
shows the log window containing some performance data and output generated by
the show args button (See Section C.1.3).

C.2 Command Line Interface
The command line interface is implemented by the cmdline.py script. cmd-

line.py is executed as follows:
python cmdline.py targetdir command
where targetdir is the directory to save results to and command is one or more
space separated commands for the system to process. The format for command
is the name of the command and the arguments for the command separated by
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carat (‘ˆ’) characters. The arguments consist of the argument name an its parame-
ters separated by commas (‘,’). An example is “python cmdline.py ˜/results
"afni2dˆfilename,˜/data/inputˆslice,33" "cDistanceˆactrng"
"ckmeansˆk,3,8"”

Performance data will be output to the console at runtime. Results can be
viewed in the Graphical User Interface (Section C.1).

C.3 Implemented Commands
Several commands are available for use. This section outlines what they do

and what arguments they take.

C.3.1 Input Commands
afni2d

Input a particular slice from a 3-D AFNI file.
Argument Description
filename The name of the file to use
slice the image slice number to use

afni3d

Input a 3-D AFNI file.
Argument Description
filename The name of the file to use

dicom

Input a 2-D DICOM file.
Argument Description
filename The name of the file to use

dicom3d

Compose several 2-D dicom files into a 3-D image.
Argument Description
filename The names of the files to use
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C.3.2 Distance Commands
uDistance

Euclidean distance.
Argument Description
actrng the input range to calculate the distance on

(comma separated start, stop pair, one or both are optional)

cDistance

Euclidean distance implemented with Pyrex.
Argument Description
actrng the input range to calculate the distance on

(comma separated start, stop pair, one or both are optional)

C.3.3 Processing Commands
kmeans

k-Means clustering algorithm.
Argument Description
k number of clusters to generate

(comma separated start, stop, step triple;
step is optional )

ckmeans

k-Means clustering algorithm implemented in Pyrex. Use with cDistance.
Argument Description
k number of clusters to generate

(comma separated start, stop, step triple;
step is optional )
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C.3.4 Post Processing Commands
histogram

Calculate histogram on cluster results.
Argument Description
f filename to write the histogram to
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Appendix D

Developer’s Guide

D.1 Overview
Components in the MIPA system are Python modules that expose the MIPA

defined component interface. Any valid Python module, either a C extension or a
text based script, will work. The MIPA system will attempt to register all Python
modules placed in the plugins directory. Registration allows the component to tell
the system what commands it provides.

See the Python Programming Language documentation (http://www.python.
org/doc/) for information on programming in Python and creating Python mod-
ules. Image data is represented as Numeric Python Arrays. See the Numeric
Python documentation for information on using Numeric Python (http://numeric.
scipy.org/).

D.2 Command Registration
Each component (Python module) must define a function called register (See

Listing D.1) which returns information about the commands that the component
supports. This information is returned as a list of registration.RegistrationInfo

objects. Listing D.1 gives an example defining 2 commands, cmd and filecmd.
Line 1 brings the RegistrationInfo class from the registration module into the

current name-space. Line 3 begins the definition of the register function.
On Lines 4 and 7, the RegistrationInfo objects are created. The first argument

to the constructor is the name of the command; a class of this name will also need
to be defined in the module. The second argument to the constructor is a short
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Listing D.1: The registration function.
1 from registration import RegistrationInfo
2

3 def register():
4 c = RegistrationInfo(’cmd’,’Command Desc’,’clusteralg’)
5 c.addParam(’arg’, ’Arg Desc’, ’irange’)
6

7 f = RegistrationInfo(’filecmd’,’FileCmd Desc’,’postprocess’)

8 fargs = {’filter’: [(’*.txt’, ’Text Files’)]}
9 f.addParam(’filename’, ’Filename Desc’, ’fname’, fargs)

10 f.addParam(’i’, ’I Desc’, ’int’)
11

12 return [c, f]

Table D.1: Command Types

Command Type Description
datafile File Loading
distance Distance Calculation
feature Feature Extraction
clusteralg A clustering algorithm (main processing)
postprocess Post-processing of main processing output

description of the command. This should clearly describe what the command
does, for instance a command for the k-Means algorithm might be called ’kmeans

’ and have a description like ’k-Means Clustering Algorithm’. The third and
final argument to the constructor is the type of command. Command types are
shown in Table D.1.

On Lines 5, 9 and 10 arguments are added to the commands with the addParam

method. The first argument to addParam is the name of the argument. The second
argument to addParam is a description, which should clarify the purpose of the
argument being added. The third parameter is the argument type. Table D.2 lists
the argument types and the values they accept. Line 9 shows the use of the optional
fourth argument to addParam, filename args. This argument is only valid with an
argument type of ’fname’ or ’fnamel’ and provides extra information for file
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Table D.2: Argument Types

Argument Type Description
str A string argument
int An integer argument
float A floating point argument
fname A filename argument
fnamel A list of filenames
irange A range of integers denoted as a start,

stop, step triple where step is optional
frange A range of integers denoted as a start,

stop, step triple where step is optional
slice A start, stop pair where both start and stop

are optional positive integers. If none are
given, whole range is to be used, if one is
given it is taken as stop and start is taken as 0

handling to the user interface. This argument takes a python dictionary, in this
case defined on Line 8. Table D.3 lists of dictionary keys and their function.

D.3 Command Definition and Semantics
Each command type requires that an object be defined with a particular inter-

face. Each command takes some arguments as defined during registration. The
arguments are passed as a dictionary where the keys are the argument names and
the values are the values provided by the user. Some commands take these argu-
ments at construction, while others take the arguments during a method call. The
following sections describe interfaces.

D.3.1 File Input: datafile
File input is performed by commands of type datafile. The constructor for

a datafile command is passed the argument dictionary. The only other interface
that a command of type datafile must export is the getArray method which takes
no arguments and returns a one dimensional Numeric Python Array object. Each
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Table D.3: File Argument Dictionary Keys and Values

Dictionary Key Description
strip A list of suffixes that should be removed

from the file name before use
filter A list of tuples defining file filters.

The first element in the tuple is a wildcard
that matches the file type, the second element
in the list is a name for the type of files
this matches

element in the Array object represents one 16 bit pixel value organized moving
left to right, top to bottom.

D.3.2 Distance Calculation: distance
Distance calculation is performed by commands of type distance. The con-

structor for a distance command is passed the argument dictionary. The only other
interface that a command of type distance must export is the calculate method
which takes two arguments, x and y. x and y are one dimensional Numeric Python
Array objects representing vectors. The calculate method returns the result of the
distance calculation as either a floating point number or an integer.

D.3.3 Feature Extraction: feature
Feature extraction is performed by commands of type feature. The construc-

tor for a command of type feature is passed the argument dictionary. The only
other interface that a command of type feature must export is the getArray method
which takes no arguments and returns a one dimensional Numeric Python Array
object. Each element int he Array object represents one 16 bit pixel value orga-
nized moving left to right, top to bottom.
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D.3.4 Main Processing: clusteralg
Main processing is performed by commands of type clusteralg. The construc-

tor for a command of type clusteralg is passed the distance command object. A
command of type clusteralg must also define the execute method which takes an
argument dictionary and the data to process.

The data is a Numeric Python Array where the first dimension is the pixel po-
sition (y * width + x) and the second dimension is each individual feature (original
data or extracted feature).

The argument dictionary is handled a little bit differently because irange and
frange arguments cause execute to be called once for every combination of argu-
ment and values in the range. For instance if a command defines arguments i and
j of type irange and the user indicates that i should have a start and a stop 1 and 3
while j should have a start and stop 0 and 2, execute will be called 4 times. The
values taken by (i, j) will be (1,0), (1,1), (2,0), and (2,1).

Each time execute is called, must return a pair. The first element of the pair
is a one dimensional Numeric Python Array object of the same length as the first
dimension of the data Array object passed to execute. The Array object represents
the cluster that the image pixel belongs to. The second element in the pair is a
list of one dimensional Numeric Python Array objects that define the middle of
each cluster. each Array object in the list must be of the same length of the second
dimension of the data Array object passed to execute.

D.3.5 Post Processing: postprocess
Post processing is performed by commands of type postprocess. The construc-

tor for a command of type postprocess is passed the distance command object. A
command of type postprocess must also define the execute method which takes
an argument dictionary and the data that was processed. The cluster membership
of each clustering run is passed in the argument dictionary as a two dimensional
Numeric Python Array object. The first dimension is the pixel location and the
second dimension is the cluster run.

Arguments given by the user are passed in the argument dictionary in the same
way that they are for the commands of type clusteralg.

The execute method must return some value, but the value is arbitrary, i.e. the
system does not care what the value is.
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